

Building Design Days + Energy:

Verfahren zur Dimensionierung von Heizung und Kühlung (Leistung und Energie) auf Basis statischer Bilanzen

Informationen für Hochschulen

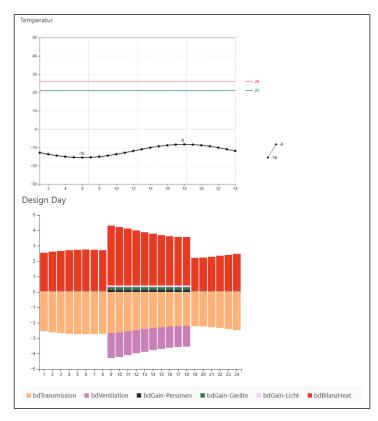


Abb. ► Wintertag: Temperatur-Randbedingungen (o.) und Wärmebilanz des Raumes (u.)

Einführung

Randbedingung Klimadaten

Heizlast

Kühllast

Energie

Gebäudemodell

Workshop

Einführung

Verfahren Building Design Days + Energy (BDD+E): Dimensionierung von Heizung und Kühlung

Ziele des Verfahrens:

- Harmonisierung von Norm-Vorgaben
- Vermitteln von Verständnis für Ursache und Wirkung

Inhalte:

- Ansatz Klimadaten: bisher <> CDD
- Heizung: Heizlastberechnung <> BDD (Dimensionierung am Winter-Tagesgang)
- Kühlung: Kühllastberechnung <> BDD (Dimensionierung am Sommer-Tagesgang)
- Energie: GEG <> BDD+E (Ermittlung Jahresenergie am Jahresgang)
- Berechnung am vereinfachten Gebäudemodell

Diese Inhalte sollen auch in einem Hochschul-Seminar vermittelt werden.

alware

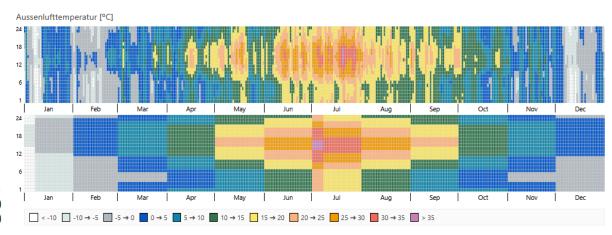
Einführung

Randbedingung Klimadaten

Heizlast

Kühllast

Energie


Gebäudemodell

Workshop

Randbedingung Klimadaten

Reale Klimadatensätze weisen eine hohe punktuelle Variabilität der Messwerte auf.

- Fehlende Systematik in herkömmlichen Klimadatensätzen (z.B. TRY)
 machen dem Planer die Auswahl von geeigneten Zeitpunkten für die
 Dimensionierung von Heizung und Kühlung schwer.
- Alternativer Ansatz: Climate Design Days (CDD)
 - Generische Datensätze mit 8760 Stundenwerten für das Jahr, anhand weniger Eingabeparameter gebildet
 - Systematisierte CDD entsprechen dem Originaldatensatz in Summe, Häufigkeit und Extremen

Finf::hww.n

Randbedingung Klimadaten

Heizlast

Kühllast

Energie

Gebäudemodell

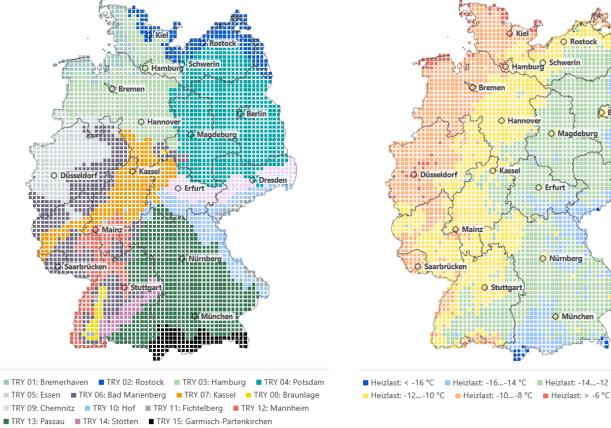
Workshop

Climate Design Days

Ausgangsfrage:

- Welche Design Days verwenden die Planer
 - für Dimensionierung der Heizung
 - für Dimensionierung der Kühlung
 - für Bewertung der thermischen Behaglichkeit im Winter und Sommer
 - für Berechnung der Jahresenergie für Heizen und Kühlen
- Climate Design Days als Klima-Randbedingung für alle Fragestellungen
- Exkurs: Klimaerwärmung
 - Analyse Klima historisch (z.B. für Potsdam 1893 2024)
 - zeigt Entwicklung: z.B. mildere Winter
 - Vorgaben in Heizlast-Norm (DIN 12831-1) sind veraltet

Randbedingung Klimadaten


Heizlast

Energie

Workshop

Randbedingung Klimadaten

Vorgaben für Deutschland durch unterschiedliche Normen

Deutschlandkarte mit TRY-Regionen (l.)

und mit Normaußentemperatur nach DIN (r.)

Einführung

Randbedingung Klimadaten

Heizlast

Kühllast

Energie

Gebäudemodell

Workshop

Randbedingung Klimadaten

Bisher:

Unterschiedliche Klimarandbedingungen für unterschiedliche Fragestellungen.

Klimadaten		Ort: Potsdam			Außenluft-Temperatur							
					Design Parameter							
Ziel		Jahr	Beschreibung	Region	Winter			Sommer			Jahr	Monat
					T x win	T m d wi	t x win	T x som	T m d so	t x som	T m y	dT mon
					°C	°C	-	°C	°C	-	°C	K/mon
1.	heute	2020	CDD, TRY 04, Potsdam	TRY 04, extrem	-15,5	-11,9	6	35,9	28,4	15	9,2	4,83
2.	Heizlast	2024-12	DIN EN 12831	Potsdam	-12,5	-12,5					9,6	
3.	Kühllast	2015-06	VDI 2078	KLZ 3: Juli				33,0	25,0	15		
4.	Energie	2018-09	DIN EN 18599 für GEG	TRY 04, normal	-12,0	-12,0		25,0	25,0		9,5	
5.	Komfort	2013-02	DIN 4108-2	Region B, TRY 04, normal	-13,4	-9,4	7	35,4	26,5	15	9,5	3,48
6.	Zukunft	2035	CDD, TRY 04, Potsdam	TRY 04, extrem	-9,8	-8,1	6	37,3	28,8	15	10,8	3,90

Alternative

 Ein einziger konsistenter Datensatz als Klimadaten-Randbedingung für Heizlast, Kühllast, Jahresenergien und Komfort-Bewertung

Ware

Einführung

Randbedingung Klimadaten

Heizlast

Kühllast

Energie

Gebäudemodel

Workshop

Heizlast

Heizlastberechnung nach Norm

Verfahren Heizlastberechnung festgelegt in DIN EN 12831

- Vorgabe Norm-Außentemperatur
- Dimensionierung auf Basis eines einzigen Spitzenwertes
- Keine Berücksichtigung von Fremdwärme (interne Wärmequellen, Solareintrag)
- Führt in der Praxis oft zu erheblich überdimensionierten Heizungen.

Einführung

Randbedingung Klimadaten

Heizlast

Kühllast

Energie

Gebäudemodell

Workshop

Heizlast

Dimensionierung der Heizung mittels Building Design Days: Wintertag

Wärmebilanz Raum

Anmerkung:

Im CDD kann für die Dimensionierung der Heizung mittels BDD z.B. auch die jeweilige DIN-Norm-Außentemperatur gemäß Heizlastberechnung angesetzt werden.

Einführung

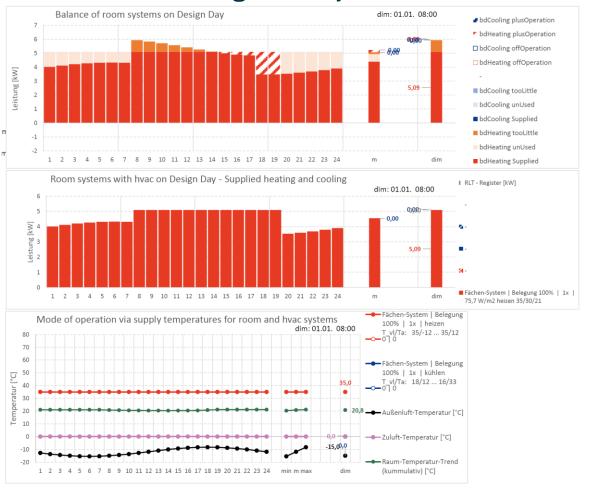
Randbedingung Klimadaten

Heizlast

Kühllast

Energie

Gebäudemodell


Workshop

Heizlast

Dimensionierung der Heizung mittels Building Design Days: Wintertag

Dimensionierung Raumsystem

Ware sevend simulation

Einführung

Randbedingung Klimadaten

Heizlast

Kühllast

Energie

Gebäudemodel

Workshop

Kühllast

Kühllastberechnung nach Norm

Verfahren Kühllastberechnung festgelegt in VDI 2078

- Berechnung einer extremen Hitzeperiode
- Berücksichtigung von internen Wärmequellen, Solareintrag
- > Führt in der Praxis oft zu überdimensionierten Kühlanlagen.

Einführung

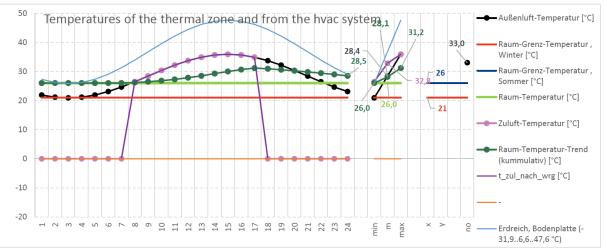
Randbedingung Klimadaten

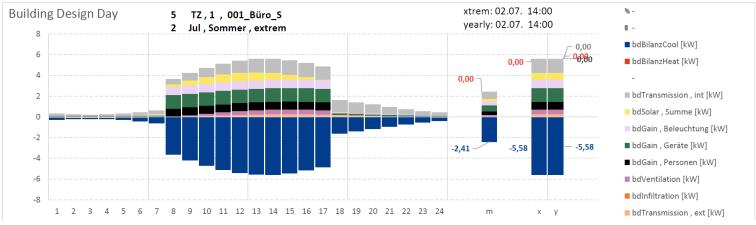
Heizlast

Kühllast

Energie

Gebäudemodell


Workshop



Kühllast

Dimensionierung der Heizung mittels Building Design Days: Sommertag

Wärmebilanz Raum

Einführung

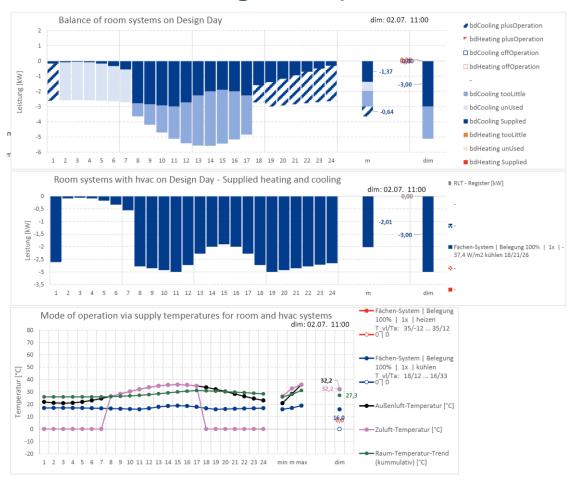
Randbedingung Klimadaten

Heizlast

Kühllast

Energie

Gebäudemodell


Workshop

Kühllast

Dimensionierung der Heizung mittels Building Design Days: Sommertag

Dimensionierung Raumsystem

alware

Einführung

Randbedingung Klimadaten

Heizlast

Kühllast

Energie

Gebäudemodell

Workshop

Energie für Heizen und Kühlen

Berechnung der Jahres-Energie nach Norm

Verfahren für GEG ist festgelegt in DIN V 18599

- Ansatz unrealistischer Randbedingungen
- Ziel: Gebäudebestand in Deutschland vergleichbar machen und energetische Minimalstandards setzen
- Ziel ist nicht die tatsächliche Ermittlung des konkreten Bedarfs an Energie
- Resultat GEG-Nachweis ist nicht als Basis zur Auslegung von Anlagentechnik gedacht

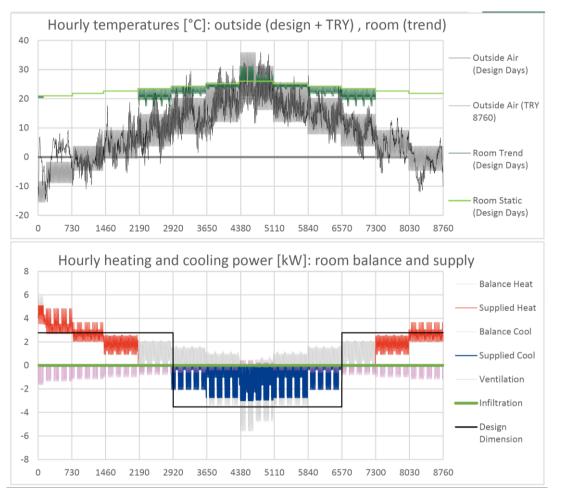
Einführung

Randbedingung Klimadaten

Heizlast

Kühllast

Energie


Gebäudemodell

Workshop

Energie für Heizen und Kühlen

Ermittlung der Jahresenergien mittels Building Design Days + Energy: Jahresgang

alware

Einführung

Randbedingung Klimadaten

Heizlast

Kühllast

Energie

Gebäudemodell

Workshop

Gebäudemodell

Building 27 Ein einfaches Modell für die Lehre

- Gebäudemodell mit 27 thermischen Zonen
- Parametrierbar: z.B. Anzahl der Regelgeschosse, geometrische Abmessungen wie Länge, Breite und Geschosshöhe, Fensterflächenanteil usw.
- Alle typischen geometrischen Situationen eines Gebäudes abbildbar für beliebiges Gebäude, z.B. Wohngebäude, Bürogebäude, etc.

Ware sevend simulation

Einführung

Randbedingung Klimadaten

Heizlast

Kühllast

Energie

Gebäudemodell

Workshop

Workshop für Hochschulen

Unterstützung der Lehre | Heizungs- und Klimatechnik

Inhalte, Ziele

- Vergleich von Normen und Design
 - Unterschiedliche Ansätze und Ergebnisse
- nachhaltig sicher dimensionieren
 - Überdimensionierung vermeiden, nachhaltige Betriebsweisen entwerfen
- Erkenntnis erreichen durch Transparenz
 - Erkennen von Ursache und Wirkung
- Zukunft gestalten
 - Harmonisierung von Rechenverfahren, ganzheitliche Betrachtung

alware

Einführung

Randbedingung Klimadaten

Heizlast

Kühllast

Energie

Gebäudemodell

Workshop

Workshop für Hochschulen

Unterstützung der Lehre | Heizungs- und Klimatechnik

Möglicher Ablauf

- Teil 1: Einführung (Präsenz-Veranstaltung)
 - Methode
 - Climate Design Days
 - Building Design Days + Energy
 - Building 27
 - Energiekonzept
 - Luft/Wasser-Wärmepumpe
 - Design Faktoren
 - Versionen (Übungsteil)
 - Live Änderungen am Entwurf diskutieren und bewerten
 - Ursache und Wirkung erkennen
 - Ausgabe der Aufgaben an die Studierenden

alware

Einführung

Randbedingung Klimadaten

Heizlast

Kühllast

Energie

Gebäudemodell

Workshop

Workshop für Hochschulen

Unterstützung der Lehre | Heizungs- und Klimatechnik

Möglicher Ablauf

- Teil 2: Bewertung (intern)
 - Sichten und bewerten der eingereichten Lösungen für die Studienaufgabe
- Teil 3: Nachbesprechung (Webinar)
 - Vorstellung der Lösungsansätze für die Studienaufgabe
 - Vergleich und Diskussion
 - Bewertung (z.B. hinsichtlich Nachhaltigkeit)
 - Fazit und Ausblick

Was machen wir - anders.

Wir passen uns an...

an Ihr Klima, an den Klimawandel, an Ihre Energiequellen, an Ihre Messungen, ...an Ihre Wünsche.

alware GmbH
Ingenieurbüro für Bauphysik und
Simulation von Gebäuden und Energiekonzepten
Rebenring 37
D-38106 Braunschweig

Geschäftsführung: **Dipl.-Phys. Ing. Andreas Lahme**

